U-Bolt: Campus Identity Integration for Decentralized Systems

David Champion
Computation Institute, Enrico Fermi Institute
US ATLAS, UC3
University of Chicago
UC3 Identity
Where it started
UC3 Identity Goals

• UC3 is an open platform for connecting research to distributed HTC resources across campus.
 » Condor cluster that can flock to other Condor clusters on campus
 » 4-5 other facilities on campus, upwards of 10,000 job slots accessible

• Users could be anyone on campus.

• Users should be validated as legitimate campus personnel.

• Shared facilities should have a common basis for identifying owners of data and users of resources.
UC3 Identity Goals

• We want to get potential users online:

 1. *quickly*
 » minimally operational within 60 minutes

 2. *simply*
 » use existing connection tools and identity frameworks

 3. *cheaply*
 » no new username and passwords
 » no complicated registration process, when the University already knows all users

• Campus identity is the obvious solution, but not all the pieces were there. To integrate our local access, we needed to improvise.
UC3 Onboarding Demo
Initial Visit

University of Chicago Computing Cooperative

What is UC3?
UC3 is an open computing framework for connecting users to shared Distributed High-Throughput Computing (DHTC) resources, both on- and off-campus.

Who may use UC3?
Anyone with a University of Chicago CNetID may register to use UC3.

How can you use UC3?
Upon receiving authorization for UC3, you may log in to go3-submit.uchicago.edu using your CNetID and password.

Further Reference
- Job Submission Reference
Here you'll find links to the latest news and project activity for UC3, via RSS aggregation.

- Heading to Indianapolis by David Champion
- UC3 News Page by David Champion
- U-Bolt Presentation by David Champion
Login (Campus Credentials)

To view this page, you must log in to this area on uc3.uchicago.edu:443:
CNet Authentication
Your login information will be sent securely.

Name:
Password:

- Remember this password in my keychain

[Log In] [Cancel]
User Registration

Update UC3 Profile

Please take a moment to update your profile and to tell us more about your interests. The better we know you, the better we can support your work.

Your profile information:

- Name: David Champion (dgc)
- E-Mail address: dgc@uchicago.edu
- Affiliation: staff
- Department: Computation Institute
- Member since: Aug. 15, 2012, 11:27 a.m.

Research:

- I research everything

UC3 interests:

- just curious

Software needs:

- zork
Time Passes...

One Hour

(ideal)
Return after Registration: Quick Start

UC3 Quickstart

Added by Marco Mambelli, last edited by David Champion on Mar 06, 2013

Table of Contents

1 Login to UC3
2 Set up the tutorial
 2.1 Manual setup
 2.2 Pretyped setup
3 Create a workload
4 Check job status
5 Check the job output
6 Now scale up
7 Flocking to a specific environment
8 Deleting jobs
9 Getting help

This is a quick start page which should take only a few minutes to go through. For more complete information go to the Job Submission page or other guides linked from UC3 Home.
Return after Registration: Submit!

```
uc3-sub login:  
```
Login Failure

bash ttys007 09:39:41 ~ [3/0]:
bash ttys007 09:39:42 ~ [3/0]: ssh uc3-sub.uchicago.edu
You must be a uniqueMember of cn=uc:org:uc3:users,ou=groups,dc=uchicago,dc=edu to login.
Connection closed by 128.135.158.243
bash ttys007 09:39:54 ~ [4/0]:
What is Campus Identity Integration?
(And why do we care?)
Basic Questions About Identity

• What is identity, fundamentally?

 1. a token whose meaning is shared between a user or user agent and a resource controller
 » My userid is *wjclinton*.

 2. identity can, but need not, make claims about your individual self
 » My userid is *wjclinton*. My birthday is August 19. I am number 42.
 » My userid is *CN=38f97c01-ccbe-4ad1-a6d7-72bebe31249b*.

 3. identity represents you or your agent in a transaction with a service provider
 » As *wjclinton*, I demand that you release the codes.
Basic Questions About Identity

• What does identity allow, in practice?

1. a *provable* assertion of entitlement
 » I, *wjclinton*, claim to have access to this computational facility. The evidence of my claim is this well-guarded secret.

2. a *shared token* whose meaning is agreed upon between a user agent and a resource controller (service provider)
 » You grant *wjclinton* rights. If we agree that I am *wjclinton*, then give me those rights.

3. links to other attributes of a person or agent
 » Since we agree that I am *wjclinton*, you may trust that I am reachable at a known e-mail address and phone number.

• *Identity Management (IdM)* is solving these problems and managing necessary data flows.
Isolated Identity

- *Isolated identity* refers to an identity store that is disconnected from other consumers and providers
 1. it does not provide identity to anything but itself
 2. it does not provide service to anyone identified externally

- Examples:
 1. UNIX /etc/passwd (usually)
 2. Apache htpasswd
 3. Samba smbpasswd
 4. Mac, Windows local users
Isolated Identity

• Advantages of isolated identity service

 1. **local control**: no external authority controls who may have identity in your service

 2. **flexibility**: because you control it, you may create multiple distinct identity types (individual user, workgroup, VO, glide-in agent)

 3. **low latency**: new users can be created and given privileges without significant delay

 4. **independence**: your service does not rely upon external providers to grant access
Isolated Identity

- Disadvantages of isolated identity
 1. **obligation**: no one else is going to help you maintain your identity system(s)
 2. **high latency**: it’s another hoop for a prospective user of your service to jump through before being active
 3. **redundancy**: users have already provided ID to your greater institution; why must they do it again for you?
 4. **difficulty**: users must remember another password (and perhaps also username), or manually keep them in sync
 5. **inefficiency**: reduplication of effort in constructing, maintaining, and disabling accounts at various life cycle
Isolated Identity

• Many or most UNIX (Linux, etc) login servers operate using isolated identity systems
 1. local /etc/passwd for each system or site
 2. configuration management only takes you one step up
 + assists with synchronization of the passwd file across many systems
 - does not distance your team from the maintenance obligation
 - does not address user’s concerns (obstacles to enablement)
 - still reduplicates labor across the institution

• So what do we do, then?
Centralized Identity

- **Centralized identity** services permit identity to be unified across the larger organization — the company or institution
 1. puts core identity management in the hands of a distinct team who can negotiate eligibility and life cycle with central resources (HR, Student Systems, Provost, Research VP)
 2. publishes this information to all consumers
 3. all consumers in sync with one another
 - common identifiers lower barriers to intra-institutional resource sharing
 - separate organizations can know that they’re talking about the same user — ID becomes a shared token in a larger context than otherwise
• *Campus Identity* is centralized identity for the campus.

• *Campus Identity Integration* is addressing how to make campus identity work at the local scope.
 1. offset isolated identity disadvantages with central identity advantages
 2. use mixed identity services to hang onto the advantages of isolated identity management

• Central IdM provides this service, but cannot solve your localized concerns.
CII Goals

1. Identity roles provided by central IdM should be visible and meaningful locally.

2. Authentication (authN) using these identities should be possible using centralized authN credentials.

3. Resource authorization (authZ) policy should be managed locally.

a. Central IdM may, however, act as a disburser of authZ policy that is defined by a resource manager (you).
4. The resource manager (you) should have liberty to augment central identity with local identity (for VO, etc).

5. The resource manager should have liberty to supersede identity attributes from central IdM as necessary, to ensure correct behavior and sustainability in the resource environment.
• All this is doable out of the box, provided a sufficiently enabling campus directory.
 » Today, this generally means an LDAP or Active Directory (AD) service.
 » LDAP provides both directory service and authentication service using only OpenLDAP client software.
 » AD is LDAP + Kerberos + Microsoft magic sprinkles. OpenLDAP client software provides directory service, while Samba’s winbind provides authentication.

• Out of box success requires complete provisioning of the attributes required by the posixAccount object class.
• Why is this a challenge?

1. Anecdotally, *almost nobody* provides this completely.
2. When they provide it partially, they come up short in different ways.
 - Some central IdM services do not publish all users, or give clients only limited views.
 - Some IdM services don’t incorporate *posixAccount* at all, making them no more than authentication services. Don’t expect *posixAccount* from an AD, for example.
 - Some IdM services provide *posixAccount*, but put useless data in some attributes.
 - Some IdM services provide *posixAccount*, but put no data in some attributes.
 - Your central IdM probably provides no useful groups service at all.

3. It’s each resource manager’s individual burden to address — few common tools exist.
Where do we begin with CII?
Getting Started with CII

• It’s important to understand first where central IdM is coming from:

 1. They have a large and disparate user base, and must fit their service curve to widely scattered data points.

 2. Administrative and business applications will usually carry more weight than instruction or research.
 » At core they are a business service, called upon to enable integrations and cost management that make all other lines of work possible.
 » Don’t let this frustrate you; it’s unavoidable and they didn’t make that decision.

 3. Central IdM probably cannot contribute directly to solving your problems.
 » They’re really busy too, and you’d be surprised in what aggravating ways they have to spend their time.
• Where central IdM is coming from (cont’d):

4. They are, however, *interested* in your problems, and are probably happy to discuss them in the abstract.

5. They are also interested in enhancing their service, provided that you present a cohesive case:
 » why you need the change or new capability;
 » why this won’t harm any current application or use of their service;
 » why your request constitutes an overall improvement to the institution as a whole, and not just to your “business unit”.

6. In short: they can be a good partner, but they can never work for you.
 » There are too many other people they also work for.
 » You’re going to be doing a lot by yourself — but keep them informed!
Integration Overview

1. Understand what your central IdM currently provides to you.
 a. Services: LDAP? AD? Other?
 b. Extent of service: all institutional constituents? Only certain classes?
 c. Specific attributes provisioned and provided: cn, uid? posixAccount attributes? (which ones?)
 d. Is a service DN (bind DN) required? If so, can that DN read the attributes that you need?
 e. Preferably, can your service bind as an authenticating user, then as that user retrieve required attributes?
2. Ask IdM about potential enhancements:
 a. what are they willing (and able) to add or change?
 b. what is adequate demonstration of need?
 c. what time frame do they need to accomplish this — and is that sufficient to meet your needs?
3. Minimum requirements:
 a. bind as user; read user attributes as user
 b. cn or uid contains a unique identifier
 c. all users in a single directory service
 » it’s technically possible to work around this, but it’s difficult, and there are multiple risks to negotiate
 d. everything else is on you, and not all tools exist for making the translation (but they are feasible to create)
4. Ideal scenario (cumulative):
 a. all of the posixAccount MUST attributes: cn, uid, uidNumber, gidNumber, homeDirectory
 b. two of the posixAccount MAY attributes: loginShell, gecos
 c. sensible and distinct values for uidNumber and homeDirectory
 d. group mapping from gidNumber to group names

Your situation is probably somewhere between minimum and ideal.
U-Bolt
What is U-Bolt?

• U-Bolt is identity integration middleware for the campus

• it aims to be a flexible toolkit for addressing identity integration problems for distributed environments embedded within, or with access to, larger campus infrastructures
What U-Bolt Provides

• U-Bolt currently consists of two NSS modules to address problems arising from limitations in a campus LDAP environment

 1. nss_identity to provide forward and reverse group mapping for artificial groups not in LDAP
 2. nss_filter to provide unique home directory mapping when LDAP does not

 » nss_filter also allows optional mapping of pw_gecos and pw_shell

• It is a work in progress; contributions are welcomed
Measures of Completion

• U-Bolt is already a success in that it has addressed identity integration for our site

• Major objective is to be able to piggyback on any LDAP or AD authentication service without any attribute visibility whatsoever:

 no uid • no gid • no gecos • no home directory • no shell

• However, when such attributes are visible, we should use them
Integrating Your Site
Integration Profile (redux)

Checklist of required and preferred components:

☐ bind as user; read user attributes as user
☐ cn or uid contains a unique identifier
☐ all users in a single directory service
☐ all of the posixAccount MUST attributes: cn, uid, uidNumber, gidNumber, homeDirectory
☐ two of the posixAccount MAY attributes: loginShell, gecos
☐ sensible values for uidNumber and homeDirectory
☐ group mapping from gidNumber to group names
Mitigating Reality: A Rough Guide

What ideals are you missing, and what do you do?

<table>
<thead>
<tr>
<th>Missing feature / Problem</th>
<th>How you handle it</th>
<th>Works Today?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• cn or uid missing</td>
<td>talk to IdM - you need one of these</td>
<td></td>
</tr>
<tr>
<td>• cannot bind as user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <code>loginShell</code> is not present or not useful</td>
<td>supersede with <code>nss_compat</code></td>
<td>✓</td>
</tr>
<tr>
<td>• <code>gecos</code> is not present or not useful</td>
<td>configure <code>nss_ldap</code> to use <code>cn</code> or <code>displayName</code> instead</td>
<td>✓</td>
</tr>
<tr>
<td>• <code>gidNumber</code> does not map to a named group</td>
<td>not strictly required, but you can map it in the <code>nsswitch</code> stack using <code>nss_identity</code></td>
<td>✓</td>
</tr>
<tr>
<td>• <code>homeDirectory</code> is not sensible or not unique</td>
<td>mapped through multiple layers of <code>nsswitch</code>: <code>nss_compat</code> to supersede <code>pw_home</code>, with <code>nss_filter</code> to perform user substitutions</td>
<td>✓</td>
</tr>
<tr>
<td>• <code>uidNumber</code> is not sensible or not unique</td>
<td>You can’t work with this. Ignore it and resolve as if there’s no <code>uidNumber</code>.</td>
<td>←</td>
</tr>
<tr>
<td>• no <code>gidNumber</code></td>
<td>either supersede with <code>nss_compat</code>, or treat like missing <code>uidNumber</code></td>
<td></td>
</tr>
<tr>
<td>• no <code>uidNumber</code></td>
<td>need to manufacture this on demand; this will in turn require stateful user caching</td>
<td>×</td>
</tr>
</tbody>
</table>
Solving loginShell

Problem:

- loginShell is not present or not useful in LDAP

Solution:

1. use nss_compat to supersede locally

```bash
#/etc/nsswitch.conf
passwd: files compat
passwd_compat: ldap

#/etc/passwd
root:x:0:0:System Administrator:/root:/bin/sh
bin:x:1:0::/bin/false
alice:x:2049:500:Alice:/home/alice:/bin/tcsh
+::::/bin/bash
```
Solving gecos

Problem:
 • gecos is not present or not useful in LDAP

Solution:
 1. configure nss_ldap to use cn or displayName instead
 » usually nss_ldap shares configuration with openldap and pam_ldap
 » configuration file is typically /etc/ldap.conf or /etc/openldap/ldap.conf
 » see nss_ldap(5), RFC2307

```
# /etc/ldap.conf
# For generic LDAP, map cn onto gecos
nss_map_attribute gecos cn
# For Active Directory, map displayName onto gecos
nss_map_attribute gecos displayName
```
Solving gidNumber

Problem:

• gidNumber does not map to a named group in LDAP

Solution:

1. map in nsswitch using nss_identity

 » see UC3 case study

```bash
# /etc/nsswitch.conf
passwd: files ldap
group: files identity
hosts: files dns
...
```
Solving homeDirectory

Problem:
 • homeDirectory is not sensible or not unique

Solution:

1. supersede in nsswitch using nss_compat and nss_filter

 » see UC3 case study

```
# /etc/nsswitch.conf
passwd: files filter
passwd_filter: compat
passwd_compat: ldap
```

```
# /etc/passwd
+:++++:/home/&:
```
Solving gidNumber

Problem:
- gidNumber is not present in LDAP

Solution:
1. this may be a small problem that can be solved with nss_compat supersession

 # /etc/group
 users::1001:

 # /etc/passwd
 +:::1001:::

2. otherwise this is akin to solving uidNumber; see below
Future Challenge: Solving uidNumber

Problem:

- uidNumber is not present in LDAP

Solution:

1. forward development in U-Bolt will address this:
 a. an nss_http module bind to an HTTP-based directory service

 » GET /ubolt/0.1/passwd/byuid/2052

 b. U-Bolt will provide a plugin-based reference implementation that can be tuned or extended to meet local needs
 c. service will provide stateful storage for manufactured data
 d. can be run locally or centrally
Why the HTTP approach?

- We want to simplify client configuration as much as possible, while providing solutions to any problem sites are likely to encounter.

1. There are two approaches to this:
 a. let the client talk to an extant DS (e.g. LDAP) and teach that extant DS to incorporate complexity
 - this either involves a lot of continuous feed processing — the kind of thing we’d need extensive cooperation from IdM to do — or hacks to provide configurable backends to an LDAP/NIS frontend
 b. invent a shim for the client that lets us talk to a DS that anyone can implement, or that they can borrow from us and adjust

2. The latter is simpler and more maintainable in the long term than trying to graft complex dynamic backends onto code projects (e.g. OpenLDAP) managed by an upstream host.
Why the HTTP approach?

- We need a protocol for the exchange between the nss module and the service. HTTP is:
 1. widely implemented
 » anyone can build their own service, or use our reference implementation
 2. scalable as needs change
 » can run as a local standalone service, or under Apache, etc.
 3. easily extensible
 » structure, scope, and hierarchy already present in standard HTTP WS idioms
Questions?

https://uc3.uchicago.edu/

https://uc3.uchicago.edu/news

https://uc3.uchicago.edu/ubolt

https://github.com/DHTC-Tools/ubolt

Contact: uc3-support@uchicago.edu, dgc@uchicago.edu
Technical slides are included in the full slideshow at
https://wiki.uchicago.edu/display/uc3/Presentations+about+UC3